1[mnnmm|
LR 1'|ﬁ1 [Il'll.'nn'mmmmu o

PARALLEL VIRTUAL FILE SYSTEN

Birds of a Feather
SC2004
Pittsburgh, PA

http://www.pvfs.org/pvfs2

Outline of presentation

Introduction (Walt)

PVFS2 design features (Neill)
MPI-IO and PVFS2 (Robl)

PVFS2 present and future (RobR)

Open discussion

http://www.pvfs.org/pvfs2

\ 2
V 001 o
PARALLEL VIRTUAL FILE SYSTEN

Clients running applications
(100s-10,000s)

Storage or System Network

I/O devices or servers
(10s-1000s)

« HPC applications increasingly rely on I/O subsystems
— Large input datasets, checkpointing, visualization
« Programmers desire interfaces that match their problem

domain
— Multidimensional arrays, typed data, portable formats

« Two issues to be resolved by I/O system
— Very high performance requirements (concurrent access to HW)
— Gap between app. abstractions and HW abstractions

« Software required to address both of these problems
http://www.pvfs.org/pvfs2 3

P \ 2
\ﬁ&‘mm‘.‘"“‘“
“\ 00N o
R —

PARALLEL VIRTUAL FILE SYSTEN

« Computational science applications

have complex I/O needs ~ Application

— Performance and scalability High-level 1/O Library
requirements I/0 Middleware

— Usability (Interfaces!) Parallel File System

« Software layers combine to I/O Hardware
provide functionality
— High-level I/O libraries provide useful interfaces
- Examples: Parallel netCDF, HDF5

— Middleware optimizes and matches to file system
- Example: MPI-IO

— Parallel file system organizes hardware and
actually moves data
- Examples: PVFS1, PVFS2, GPFS, Lustre

http://www.pvfs.org/pvfs2 4

I o 2.,,.
Role of parallel file systems — B¥ES=

« Manage storage hardware
— Lots of independent components
— Presenting a single logical view
— Providing data redundancy, maybe

e Scale to very large numbers of clients
— Handling many concurrent, independent accesses
— Considering client failures to be a common case
 Provide building-block API and semantics
— Usable by I/O middleware (MPI-10)
— Remembering importance of efficiency

e Recognize that this is only one piece of the
I/O system

http://www.pvfs.org/pvfs2 5

Existing solutions, problems ~ B¥E2=

« Interfaces are inadequate for efficient access
— Noncontiguous access
— Primitives for scalable I/O (including metadata)

e Consistency semantics aren’t “just right”

— POSIX scope is too big; difficult to implement with
performance and reliability

— NFS guarantees are too small; not enough
guaranteed to be useful for parallel applications

 Architectures are too complicated to manage
— Locking systems
— Fault tolerance

http://www.pvfs.org/pvfs2 6

OO 001) hioooion e
—_——————————————
PARALLEL VIRTUAL FILE SYSTEN

e Noncontiguous I/O operations oz e
are common in computational verrlll 1 B

science applicgtions I %//

e Most PFSs available today ric | |
Implement a POSIX_IIke Noncontiguous in file
interface (open, write, close) memory [N |

 POSIX noncontiguous support I]\'\\
IS POOr. Fie [l]]

— readv/writev only good for
noncontiguous in memory vemory Noncontiguous in memﬁand file
— POSIX listio requires matching
sizes in memory and file I M '\\4\\
« Better interfaces allow for Fie [

better scalability

http://www.pvfs.org/pvfs2 7

List I/O interface

memory

file

Read case

P \ 2
\ﬁ&‘uyn‘u‘\"'““‘“"’
u 00N o
R —
PARALLEL VIRTUAL FILE SYSTEN

A single I/O operation
can handle entire
noncontiguous I/0
access pattern

— If PFS supports this API
— Available in PVFS1

Overhead in passing file
offsets and lengths
across network on an
I/O operation

Description of I/O can
be bigger than data!

http://www.pvfs.org/pvfs2 8

Even better: Structured /O BMESS

« Often there is regularity in noncontiguous accesses

e We can use regularity to more efficiently express I/0
operation
— Just like we do with MPI datatypes: vectors, indexed types

« Ideal building block for scientific applications

Tile Reader Benchmark I/0 Read

~~~~~~~ POSIX ListI/0 Structured’1/0

-~
~
~
~
-~
~
-~
~
-
-~
~
-
~~
~
-~
-~
~

Results from “Datatype I/O” prototype in PVFS1

http://www.pvfs.org/pvfs2 9



- - Pmﬁ&mwww”
VOO \001 1\ wion e

R —

PARALLEL VIRTUAL FILE SYSTEN

e Most PFSs implement something similar
to POSIX consistency semantics

— Reads and writes are atomic with respect
to all other processes that might access the
file system (sequential consistency)

— Interface gives PFS little information

— Very difficult to implement with high
performance

- Must somehow be tracking all those processes

» Alternative, NFS, is too loose
— Behavior for concurrent access undefined!

http://www.pvfs.org/pvfs2 10



. . o 2.,_
Consistency in parallel apps B¥E2=

« Split the responsibility
— MPI-IO layer manages concurrent
access by group of processes

— PFS just provides basic building block:
atomic non-overlapping writes

- Call this “nonconflicting write

Cons_ls_tency” o o With nonconflicting write
- Sufficient for majority of applications consistency, writes to non-
- Higher performance, simpler to overlapping regions
implement occurring in any order, are

. i teed to be visible i
+ Other consistency semantics (€.9. | the fie, to all subsequent

close-to-open) might be right for reads, after the write

home directories completes.
— NFS consistency considered sufficient | Note: Must work across
in this role block boundaries!

http://www.pvfs.org/pvfs2 11



Complexity and fault tolerance BVES=

« Fault tolerance is easy when there are
no dependencies between components

— Nothing to get out of synchronization!

— Those dependencies usually take the form
of shared state — data that exists in more
than one place

- Example: disk blocks cached in memory

« Minimizing shared state should be a
priority when designing a fault tolerant
parallel file system

http://www.pvfs.org/pvfs2 12



. Pv\ﬁﬁmz
o .
T0\001 o
e
PARALLEL VIRTUAL FILE SYSTEN

« Applied to file data to provide POSIX
consistency semantics

— When someone wants to do I/O, they must
first get a lock

e Locks are shared state

— If a client dies with a lock, somehow it
must be reclaimed

— Because of that shared state, lock servers
are difficult to replicate for failover

e Locks and fault tolerance don’t mix well

http://www.pvfs.org/pvfs2 13



n ‘ )
10011 01001001 D0
=
PARALLEL VIRTUAL FILE SYSTEM

« We can implement PFSs without locks

« Change the file I/O consistency semantics

— Implement nonconflicting write consistency as
building block

— Let MPI-IO handle remaining consistency issues
for concurrent access

« Provide atomic metadata operations

— So file creates, removes, and renames maintain
consistent name space

e Resulting system is simpler, more tolerant of
failures, and better tuned for MPI-IO

http://www.pvfs.org/pvfs2 14



Our first effort: PVFS1

Started at Clemson University by

in mid 1990s —

First designed as a research tool

— Examine some of the issues we just described
- I/0 interface capabilities
- Consistency semantics

Eventually released and used as high-
performance scratch space

— Current version is 1.6.3
— Continues to be supported

A lot was learned from this project
Time is right for a new parallel file system

http://www.pvfs.org/pvfs2

15



i 1\ 2
P ﬁ““ ! g,
[ ] V mn\nﬁmﬁm‘ﬁf
e
n PARALLEL VIRTUAL FILE SYSTEN

« All new parallel file system implementation
— Kept only a familiar name, philosophy

« Architected for easy modification

« Accessible to a wide audience

« Designed for scientific applications on very
large systems

— Structured I/0, scalable metadata operations
— Nonconflicting write consistency
— Stateless, lockless system

— Tolerant of client failures, amenable to commodity
fault tolerance solutions

http://www.pvfs.org/pvfs2 16



Multi-institution collaboration ===

 PVFS2 is an open, collaborative ARGONNE
effo rt NATIONAL LABORATORY

e Core development

— Argonne National Laboratory CLEMSON

- Ross, Miller, Latham, Gropp, Thakur UNIVERSITY
— Clemson University

- Ligon, Carns (defending!), Settlemyer OS c
— Ohio Supercomputer Center

- Wyckoff, Baer ebworiing, ondeducation
e Collaborators NORTHWESTERN
— Northwestern University URIVERSITY
- Choudhary, Ching
— Ohio State University
- Panda, Wu (graduated!)
— Penn State University PENNSTATE
- Sivasubramaniam, Kandemir, Vilayannur ﬁ

http://www.pvfs.org/pvfs2 17



'|'[i'|l]1|]|||1]{|I.I]l{|I[IIM

100000001 101007
1'|ﬁ1 [Il'll:nmmnmumhm

PARALLEL VIRTUAL FILE SYSTEN

PVFS2 Design Features

http://www.pvfs.org/pvfs2



) 2
P \‘ﬁ&|mmm‘wmu.”
V 001 o
R —

PARALLEL VIRTUAL FILE SYSTEN

PVFS2 Clients

» “Intelligent” servers with
PFS-oriented protocol
— Single server type

— Can manage metadata,
data, or both

— File data distributed across many servers

« Messaging over existin PVFS2 Servers
communication networ
— Independent servers communicate only with clients
— Leverage that expensive network
« Storage on disks locally
attached to servers
— Possibly shared for failover purposes
— Both data and metadata may be distributed across servers

« MPI-IO and VFS interfaces for clients

http://www.pvfs.org/pvfs2 19



n n | )
PVﬁ‘Wsmm
10011 01001001 D0
=
PARALLEL VIRTUAL FILE SYSTEM

e Clients are independent
— No locking system to tie them together

 No need to contact metadata server on every
I/O operation
— Deterministic mapping of data placement on

servers (per file)

» Servers are threaded to handle concurrent
operations
— Better utilization of network and storage

« Nonconflicting write consistency semantics

allow for maximum I/O concurrency to a
single, shared file

http://www.pvfs.org/pvfs2 20



_ i PVE\ 2
\ ot 00001y,
OO0 o
R —
PARALLEL VIRTUAL FILE SYSTEN

PVFS2 Client PVFS2 Server
System Interface Request Scheduler

Progress Engine Progress Engine

BMI Flows BMI Flows Trove

Interconnection Network Storage HW

e Request scheduler on each server
allows fine-grained control over
ordering of operations
— Permits concurrent I/O where valid

- Enforces nonconflicting write semantic

— Ensures atomic metadata reads and
updates

http://www.pvfs.org/pvfs2 21



Support for multiple networks ===

PVFS2 Client PVFS2 Server
System Interface Request Scheduler

Progress Engine Progress Engine

BMI Flows BMI Flows Trove

Interconnection Network Storage HW

e Abstract BMI interface hides network details

« Native support for
— TCP/IP
— Myrinet GM
— InfiniBand

e Multi-homed servers supported
e Messages encoded for heterogeneous systems
« BMI implementation on Quadrics Elan4 in progress

http://www.pvfs.org/pvfs2 22



] L] ‘ \
PV oM\ s
10011 01001001 D0
PARALLEL VIRTUAL FILE SYSTEM

* For applications that access many small
files, distributing metadata eliminates
an additional bottleneck

* PVFS2 can be configured to place
metadata on any number of servers

« Replication of metadata is a separate
Issue

http://www.pvfs.org/pvfs2 23



Mapping files to servers L

« Files made up of objects stored on various servers

 Client-side configuration data provides a mapping
from object handles to servers

e Eliminates searches and additional indirection
— Minimizes latency

Client
Mapping 100-200 svr0
Table [ ] Objects,
400-500 svrN - referenced
by handle

429
483

<data>

http://www.pvfs.org/pvfs2 24



ﬁ\ 2
e ———
PARALLEL VIRTUAL FILE SYSTEM

 PVFS2 is a stateless system
— Servers operate as independent entities

— Clients are independent with respect to
one another

— Clients do not cache data that is necessary
for correct operation

— No locking system is employed

 This simplifies the handling of both
client and server failures

http://www.pvfs.org/pvfs2 25



)\ 01001 hioooion e
R —
PARALLEL VIRTUAL FILE SYSTEN

« In very large systems, client failures are
likely to be common

 The PVFS2 design allows client failures
to be ignored completely by servers and
other clients

— Clients are not responsible for any file
system data

— As opposed to file systems using locks,
where locks and dirty blocks must be
recovered

http://www.pvfs.org/pvfs2 26



. PVE\ 2
\ o 00001y,
) O 00N o
—_——————————————
PARALLEL VIRTUAL FILE SYSTEN

« Likewise, the PVFS2 server design fits
well with commodity failover solutions
— Paired servers share a partitioned storage

device, each backing up the other
- Active/Active mode

— When one server fails, %
other server takes over

— Because there is no
shared state, clients
simply reconnect

svrO svrl

Shared storage
http://www.pvfs.org/pvfs2 27



Accessibility and management BES=

 Doesn’t take a rocket
scientist to install

— One server type, simple g
configuration —

« Can be re-exported via  =—- - B —

NFS for access on other =— =

uuuuu

aaaaaaaaaaaaaaaaaaa

gggggggg

OSes —_
« GUI and command line gggg‘ ‘ | m | :
tools for monitoring and et |l

reen = read, purple = modify

eeeeeeee

administration -

— pvfs2-fsck for salvaging
damaged file systems

— Migration tools, etc. planned
but not yet in place

http://www.pvfs.org/pvfs2 28



0N W my

T0\001 o
S
PARALLEL VIRTUAL FILE SYSTEN

 Lightweight kernel module and user-space
client allow Linux nodes to mount PVFS2 file
systems

« Supports all the usual stuff, plus
— Private mmap() reads and execution
— Symlinks
* Linux 2.4 and 2.6 kernels on IA32, 1A64,
Opteron, PowerPC, Alpha
— Including mixes of these in the same file system

http://www.pvfs.org/pvfs2 29



‘I'[I'Iﬂl[ﬂl]{lll]ll:llﬂlﬂa

100000001 101007
1131 [Il'll:nmunmmlum

PARALLEL VIRTUAL FILE SYSTEN

MPI-IO and PVFS2

http://www.pvfs.org/pvfs2



P ) 2
\(ﬁw&mm i
V 001 o
| R —

PARALLEL VIRTUAL FILE SYSTEN

* One goal of the MPI-IO implementer is to eliminate
the linear relationship between number of processes
and number of file system operations

« Implementation options depend on characteristics of
the underlying file system API
— How can we “talk” to the file system?
- Richness of the API
— Who else knows what was said?
- Consistency semantics
e Two categories of operations:
— I/O operations (e.g. MPI_File_read_at)
— Management operations (e.g. MPI_File_delete)
« ROMIO MPI-IO implementation provides many
optimizations that leverage PVFS2 features

http://www.pvfs.org/pvfs2 31



. PVE\ 2
X i 00,
VOB 00N | o
—_——————————————
PARALLEL VIRTUAL FILE SYSTEN

* File views and MPI datatypes allow users and
libraries to describe noncontiguous I/0

1
)
1
1
)
I =~
~ -~
1
)

-~
~
-~
~
~
~
~
~
~
~
~
~
-~
~
~
~
~
~
-~
~~
~

~o
~
-~
~o
=

 PVFS2 allows these regions to be described
concisely as well

« ROMIO MPI-IO implementation can convert
MPI-IO descriptions into PVFS2 ones

— Not optimal yet; some performance tuning left

http://www.pvfs.org/pvfs2 32



Scalable management operations ‘===

« Most are collective, providing opportunity for
optimization

 File system interfaces and semantics also
affect management operations

 File access model (e.g. stateful file
descriptors) impacts scalability of MPI-IO
open and close

 Name space consistency impacts operations
such as MPI-IO delete

« Cache consistency and policy impacts
operations such as MPI-IO sync and resize

http://www.pvfs.org/pvfs2 33




\ 2
- PVﬁsw
)\ OO V0011 oo s
]

PARALLEL VIRTUAL FILE SYSTEM

Number of File System Operations
Function Collective? NFS POSIX PVFS2
MPI_File_get_size No O(n) O(n) O(n)
MPI_File_seek No O(n)* O(n)* O(1)*
MPI_File_delete No O(1) O(1) O(1)
MPI_File_open Yes O(n) O(n) 0O(1)
MPI_File_close Yes O(n) O(n) O(1)
MPI_File_sync Yes O(n) O(n) O(1)
MPI_File_set_size Yes O(n) O(1) O(1)
MPI_File_preallocate Yes O(1) O(1) O(1)
MPI_File_set_info Yes O(n) O(n) 0(1)
MPI_File_set_view Yes O(n) O(n) O(1)

http://www.pvfs.org/pvfs2 34



- Pv‘ﬁ\ 2
\ T 1 o,
. OO 001\ o
R —
n PARALLEL VIRTUAL FILE SYSTEN
I I

e POSIX file descriptor model limits
scalability of MPI-IO operations

— Forces all processes to make open and
close calls

— 2000 opens = system call storm!!!

 PVFS2 uses handle system instead

— One process performs file name
resolution

— MPI_Bcasts the result to other
processes

— File system traffic independent of
number of processes!

e Other operations are similar
— close, sync, truncate, etc.

http://www.pvfs.org/pvfs2 35



MPI-IO file create scalability —BE=2=

700
?E? 600
< 500 E NFS+GFS
£ O
= 400 Lustre
Y 300 W GPFS
© W PVFS1
Cs_ 200 M PVFS2
2 100 -
<

O _|

— < O W N O LN

Number of Processes

Notes: Smaller is better!

PVFS1 time skyrockets at 25 clients (2.15 sec); data omitted.
http://www.pvfs.org/pvfs2 36



L] u N\ 2
P Vﬁmﬁw
\ 10011 1010101001 00001
———
PARALLEL VIRTUAL FILE SYSTEM
— I I

Resizing a file can be performed scalably when all
nodes can immediately see file size changes

— Ok for true POSIX, PVFS, PVFS2
— Not guaranteed for NFS

1if (rank == 0) {
/¥ truncate on one node only */
ret = ftruncate(fd, size);
MPI_Bcast(&ret, 1, MPI_INT, O, comm);
}
else {
/* Bcast the result to others */
MPI_Bcast(&ret, 1, MPI_INT, O, comm);

}

http://www.pvfs.org/pvfs2 37



MPI_File_set_size scalability

300

N N
o Ul
o O

—
o

B NFS+GFS
[ Lustre

W GPFS

W PVFS1

B PVFS2

Avg. Resize Time (ms)
a1
o

Ul
o O o
|

a L]

— < OO W
i

25 rQ

—

LN

o O
o
—

Number of Processes

Notes: Smaller is better!

P ) 2
\(ﬁw&mm i
V 001 o
—_——————————————
PARALLEL VIRTUAL FILE SYSTEN

NFS+GFS time skyrockets at 50 clients (1.96 sec); data omitted.

http://www.pvfs.org/pvfs2

38



Summary of MPI-IO on PVFS2 =¥E==

e Qur ability as MPI-IO implementers to create
scalable solutions depends on the underlying
file system

— Descriptiveness of API
— Consistency semantics

 File system interfaces can be tailored to
better support scalable MPI-IO

e PVFS2 was designed with MPI-IO in mind

— Almost all MPI-IO operations, I/O and
management, are scalable on PVFS2

— As machines continue to grow in node count, this

will be ever more important
http://www.pvfs.org/pvfs2 39



'|'[i'|l]1|]|||1]{|I.I]l{|I[IIM

100000001 101007
1'|ﬁ1 [Il'll:nmmnmumhm

PARALLEL VIRTUAL FILE SYSTEN

PVFS2 Present and Future

http://www.pvfs.org/pvfs2



PVFS2 status

» Testing with hundreds of
clients, hundreds of servers, as
available

— Both “easy” access patterns
and more difficult ones

e Much of the system is in place

— TA32, 1A64, PPC, Alpha Linux
- Linux 2.4 and 2.6 kernels

— Networks: TCP, Myrinet, IB

— Storage on local file systems
- Data in UNIX files
- Metadata in Berkeley DB

— Distributed (not replicated)
metadata

— Failover
— Basic monitoring GUI

e 1.0 release is out!

MB/sec

http://www.pvfs.org/pvfs2

6000

5000 r

4000

3000

2000 r

1000

0

A 2
010100
V 001 hioooion e
R —

PARALLEL VIRTUAL FILE SYSTEM

PVFS2 read performance (GM)

T T T
32 servers —+—

128 séwers S e

40 50 60 70 80 90 100
compute nodes

10 20 30
Data obtained using ANL LCRC Jazz machine with
file sizes that would fit in cache on Jazz nodes

(Jazz nodes have single, relatively slow disks).

We’d be happy to test on a larger system if
someone wants to let us borrow one ©.

41



. o 2.,_
Comparison of features BVES-

l;ile Version Linux[LinuxStock [Native |QuadricsInfini Distrib. [Opt. for|[Failover
ystem 2.4 |2.6 [Kernel [Myrinet Band MetadataMPI-IO
Support

IPVFS2 1.0 Yes |Yes |Yes Yes Yes |Yes Yes Yes
IPVFS1 1.6.3 [Yes Yes Yes
Lustre 1.0.4 |Yes Yes Yes
|GFS 6.0 Yes Yes Yes

« Comparing against most up-to-date, freely

available versions
o References:

— http://www.clusterfs.com/compare.html
— http://www.redhat.com/docs/manuals/csafs/

http://www.pvfs.org/pvfs2 42



I I o 2..,,
Recommended configurations =ES=

e Dedicated servers
— Eliminates contention for system resources

— More consistent performance when more than one
application is running

e Linux 2.6.0+
— O(1) scheduler and NTPL support improve performance

e glibc 2.3.2+

— Earlier versions have broken AIO callbacks, and the
workaround imposes a performance hit

e gcc 3.0+

o ext3 with writeback data mode
— Fast fsck, widely supported and used, good performance

e Berkeley DB 3.3+
— Newer versions are more flexible WRT synchronization

http://www.pvfs.org/pvfs2 43



\ 2
PV/FS<
“\ 0N o
R —

PARALLEL VIRTUAL FILE SYSTEN

« 506 total clients ”
. 116.8 TByte file system 0SC

16 dual P4 servers
- 7.3 TB each
- multi-home

112 dual P4 nodes 250 IA64 nodes 144 dual P4 nodes
http://www.pvfs.org/pvfs2 44



write bandwidth (MB/s)

2500

2000

1500 -

1000

/
500 |
/4

OSC cluster performance BVES-

ROMIO perf: write w/o sync ROMIO perf: read w/o sync
4500

2Im)—0—¢

4000 | 8m x|
16m —=—

3500 -

3000 -

2500 |

2000 |

read bandwidth (MB/s)

1500

1000

f A .
500 £

1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80
number of MPI processes number of MPI processes

« Data sizes are per-client

« Achieving ~2.8GB/sec write, ~3.8GB/sec read

— No network optimization (memory registration or
pipelining)

http://www.pvfs.org/pvfs2 45



P fﬁ\ 2
i PO
V mn\nﬁmmmm
e

PARALLEL VIRTUAL FILE SYSTEN

e Performance tuning
— Improved use of PVFS2 types in ROMIO

— Elimination/minimization of metadata
operations during I/O

— Adjusting BMI and Flow code based on
performance testing

e Support and bug fixing

— With the 1.0 release, at least some of you
will try this out (we hope!)

— New users bring new questions and new
bugs

http://www.pvfs.org/pvfs2 46



1 o 2,.,,
PVFS2 future, continued PVES®

« Even more efficient operations
— Structured, intra-server collective communication

« Alternative, lower-cost redundancy schemes

— Avoiding expensive hardware through new
algorithms/approaches

— User-directed redundancy

« User-supplied hints for optimization
— Immutable files

« Extended attributes
« Support for very large scale systems

http://www.pvfs.org/pvfs2 47



File system operations 2

Many file system operations require
a sequence of steps to complete

Example: File creation
— Create metadata object

— Create objects to hold data on N
servers

— Create new directory entry

Currently clients perform these
steps
— Some serialization occurs

— Failure while in progress leaves
orphaned objects

— High latency if client is far from servers

OOOOOOO®

http://www.pvfs.org/pvfs2 48



Inter-server communication ===

« We can move these steps into the
server pool instead 0)

— Servers have storage, can log in-progress
operations

— Single coordination point for some
operations (e.qg. create)

— Servers tend to be near each other (lower
latency)

— Servers can organize communication
similar to collective communication

- Directory entry server gets message from
client

- Creates objects to hold data using tree-
based communication

- Creates metadata object, returns ACK to
client

« No changes to file layout or fault
tolerance characteristics

« Work by Phil Carns, Clemson Univ.

http://www.pvfs.org/pvfs2 49




- . e 2.,_
Software-based replication =~ BMESS

o Inter-server communication
may be leveraged to create
replicas of objects \
— Servers with independent
storage are paired @@ @@
— Clients talk to primary server
— Modifications are forwarded to mirror

— In case of failure, mirror can take over
— Active/Active approach is applicable

« Compared to hardware-supported failover
— Significantly less expensive
— Higher latency due to network synchronization

« Work by Brad Settlemyer, Clemson Univ.

http://www.pvfs.org/pvfs2 50



Very large scale systems Lk =2

Processors running
applications
(10,000s-100,000s)

Support nodes
(1000s)

I/O devices
or servers
(100s-1000s)

* These systems will have nodes between processors and storage
» Simply forwarding operations would be a disaster
— 64K independent file create requests? Writes to the same file block?

 Aggregation, statelessness, lockless solutions, leveraging
semantics, and failure tolerance will be key

— Opportunity to apply all these concepts at both stages

. PVFISZ, ROMIO MPI-IO are designed to meet the demands of this
scale

— Smaller systems should be easy in comparison!

. i[_rllfr_?structure needed for support nodes — what should it look
ike:

http://www.pvfs.org/pvfs2 51



. I I o 2..,,
Other interesting topics EVESs

« Wide-area file system access
— Building on inter-server communication
— New BMI implementation over UDP?

e Consistency semantics

— What/how can we cache on clients and still be
useful for computational science?

 Local storage organization

— Should we manage blocks, use CAS, or use
O_DIRECT?

o Security

— How do we leverage existing security components
in PVFS2?

http://www.pvfs.org/pvfs2 52



i 3 A
0 00 101010101011 10001
—_— e
PARALLEL VIRTUAL FILE SYSTEM

« Runs on a wide variety of architectures, Linux
kernels, and interconnects

* People have been beating on it for months now with
a wide variety of tests

— Averaging 80+ downloads per month
(as many as PVFS1)

— 85 PVFS2-users subscribers

e Performance will improve, but it isn’t bad now (multi-
GB/sec large I/0)

« Documentation, support mailing lists, etc. are all in
place

« Failover, pvfs2-fsck, and GUI monitoring help
complete the package

http://www.pvfs.org/pvfs2 53



- - - - Puﬁ&mmﬂww”
OO0 hioooion e

R —

PARALLEL VIRTUAL FILE SYSTEN

PVFS2 web site: http://www.pvfs.org/pvfs2
— Documentation, mailing list archives, and downloads

PVFS2 mailing lists (see web site)
— Separate users and developers lists
— Please use these for general questions and discussion!

Internet Relay Chat (IRC)

— Server irc.freenode.net, channel #pvfs2
— Talk directly with developers

Email

— Rob Ross <rross@mcs.anl.gov>

— Walt Ligon <walt@clemson.edu>

— Pete Wyckoff <pw@osc.edu>

— Phil Carns <pcarns@parl.clemson.edu>
— Neill Miller <neillm@mcs.anl.gov>

— Rob Latham <robl@mcs.anl.gov>

http://www.pvfs.org/pvfs2 54



11]11]1|I||IHII.I]I.{|I[I 0y

00 101 000001 10100
1'|ﬁ1 T R ATD

PARALLEL VIRTUAL FILE SYSTEN

Thanks for coming!

Any Questions?

http://www.pvfs.org/pvfs2



